THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 10

1. (a) Find the absolute maximum and minimum values of the function f(x,y) = xy subject the the constraint

$$\frac{x^2}{8} + \frac{y^2}{2} = 1.$$

(b) In fact, the constraint in part (a) defines an ellipse which can be parametrized as $\gamma(t) = (2\sqrt{2}\cos t, \sqrt{2}\sin t)$, where $0 \le t \le 2\pi$.

Therefore, the question in part (a) is equivalent to finding absolute extrema of the single variable function $f(\gamma(t))$ (by abuse of notation, it is simply denoted by f(t)).

Using techniques in single variable calculus to find absolute extrema of f(t) and verify the answer in (a).

Ans:

(a) Let $g(x,y) = \frac{x^2}{8} + \frac{y^2}{2} - 1$. Then, we have $\nabla f(x,y) = (y,x)$ and $\nabla g(x,y) = (\frac{x}{4},y)$. By the method of Lagrange Multipliers, we let $\nabla f(x,y) = \lambda \nabla g(x,y)$, and so

$$\begin{cases} y = \frac{\lambda x}{4} \\ x = \lambda y \\ \frac{x^2}{8} + \frac{y^2}{2} = \end{cases}$$

1

Eliminating y from the first two equations, we have $x = \frac{\lambda^2}{4}x$ and so x = 0 or $\lambda = \pm 2$. When x = 0, $y = \frac{\lambda x}{4} = 0$, but (x, y) = (0, 0) does not satisfy the last equation; when $\lambda = \pm 2$, $x = \pm 2y$, put them into the last equation, we have $y = \pm 1$.

f(1,2) = f(-1,-2) = 2 and f(-1,2) = f(1,-2) = -2, so f(x,y) attains absolute maximum at (1,2) and (-1,-2) and it attains absolute minimum at (-1,2) and (1,-2).

- (b) $f(t) = f(\gamma(t)) = (2\sqrt{2}\cos t)(\sqrt{2}\sin t) = 2\sin 2t$. Then, $f'(t) = 4\cos 2t$. If f'(t) = 0, $t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$. Also $f''(t) = -8\sin 2t$ and $f''(\frac{\pi}{4}) = f''(\frac{5\pi}{4}) = -8 < 0$, $f''(\frac{3\pi}{4}) = f''(\frac{7\pi}{4}) = 8 > 0$. Therefore, f(t) attains maximum at $t = \frac{\pi}{4}, \frac{5\pi}{4}$ and minimum at $t = \frac{3\pi}{4}, \frac{7\pi}{4}$. We have $f(\frac{\pi}{4}) = f(\frac{5\pi}{4}) = 2$ and $f(\frac{3\pi}{4}) = f(\frac{7\pi}{4}) = -2$. Therefore, f(x, y) attains absolute maximum at (1, 2) and (-1, -2) and it attains absolute minimum at (-1, 2).
- 2. Find the maximum and minimum values of the function f(x, y, z) = 4x 7y + 6z subjected to the constraint $g(x, y, z) = x^2 + 7y^2 + 12z^2 = 104$.

Ans:

Let $g(x, y, z) = x^2 + 7y^2 + 12z^2 - 104$. Then, we have $\nabla f(x, y, z) = (4, -7, 6)$ and $\nabla g(x, y, z) = (2x, 14y, 24z)$. By the method of Lagrange Multipliers, we let $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$, and so

$$\begin{cases}
4 = 2\lambda x \\
-7 = 14\lambda y \\
6 = 24\lambda z \\
x^2 + 7y^2 + 12z^2 = 104
\end{cases}$$

From the first three equations, we have $x = \frac{2}{\lambda}$, $y = -\frac{1}{2\lambda}$ and $z = \frac{1}{4\lambda}$. Put them into the last equation, we have

$$\left(\frac{2}{\lambda}\right)^2 + 7\left(-\frac{1}{2\lambda}\right)^2 + 12\left(\frac{1}{4\lambda}\right)^2 = 104$$
$$\frac{13}{2\lambda^2} = 104$$
$$\lambda = \pm \frac{1}{4}$$

When $\lambda = \frac{1}{4}$, (x, y, z) = (8, -2, 1); when $\lambda = -\frac{1}{4}$, (x, y, z) = (-8, 2, -1). f(8, -2, 1) = 52 and f(-8, 2, -1) = -52, so f(x, y, z) attains minimum at (-8, 2, -1) and it attains maximum at (8, -2, 1).

3. Let
$$f(w, x, y, z) = \left(w + \frac{1}{w}\right)^2 + \left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 + \left(z + \frac{1}{z}\right)^2$$
 for $w, x, y, z > 0$.
Prove that f is bounded below by $\frac{289}{4}$ on the plane $w + x + y + z = 16$.

Ans:

Let g(w, x, y, z) = w + x + y + z - 16.

By the method of Lagrange Multipliers, we let $\nabla f(w, x, y, z) = \lambda \nabla g(w, x, y, z)$, and so

$$\begin{cases} 2\left(w+\frac{1}{w}\right)\left(1-\frac{1}{w^2}\right) = \lambda\\ 2\left(x+\frac{1}{x}\right)\left(1-\frac{1}{x^2}\right) = \lambda\\ 2\left(y+\frac{1}{y}\right)\left(1-\frac{1}{y^2}\right) = \lambda\\ 2\left(z+\frac{1}{z}\right)\left(1-\frac{1}{z^2}\right) = \lambda\\ w+x+y+z = 16 \end{cases}$$

From the first two equations, we have

$$\begin{array}{rcl} w - \frac{1}{w^3} &=& x - \frac{1}{x^3} \\ w - x &=& -\frac{w^3 - x^3}{w^3 x^3} \\ w - x &=& -\frac{(w - x)(w^2 + wx + x^2)}{w^3 x^3} \end{array}$$

Therefore, w = x or $1 = -\frac{w^2 + wx + x^2}{w^3 x^3}$, but the second case is rejected since the left hand side is negative. Similarly, we have w = x = y = z.

From the last equation, we have w = x = y = z = 4. Therefore, f attains an extreme value $f(4, 4, 4, 4) = \frac{289}{4}$.

The most difficult part is showing that it is indeed the absolute minimum.

Let $D = \{(w, x, y, z) \in \mathbb{R}^4 : w, x, y, z > 0 \text{ and } w + x + y + z = 16\}$ and in fact, we are finding extreme values of the function $f: D \to \mathbb{R}$ defined by

$$f(w, x, y, z) = \left(w + \frac{1}{w}\right)^2 + \left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 + \left(z + \frac{1}{z}\right)^2.$$

Let $D' = \{(w, x, y, z) \in \mathbb{R}^4 : w, x, y, z \ge 1/10 \text{ and } w + x + y + z = 16\} \subset D \text{ which is a compact subset of } \mathbb{R}^4$. Therefore, $f: D' \to \mathbb{R}$ has an absolute minimum by the extreme value theorem. However, for any point $(w, x, y, z)\partial D'$ of D', there is a coordinate, say w = 1/10. Then, at that point, we have

$$f(w, x, y, z) > (w + \frac{1}{w})^2 = (\frac{101}{10})^2 > 100 > \frac{289}{4}$$

Therefore, the absolute minimum of the function $f: D' \to \mathbb{R}$ attains absolute minimum at (4, 4, 4, 4).

Furthermore, if $(w, x, y, z) \in D \setminus D'$, then there is a coordinate, say w, so that 0 < w < 1/10. Then, at that point, we have

$$f(w, x, y, z) > (w + \frac{1}{w})^2 > (\frac{1}{w})^2 > 100 > \frac{289}{4}.$$

Therefore, $f(w, x, y, z) \ge \frac{289}{4} = f(4, 4, 4, 4)$ for all *D*.

4. Find the absolute maximum and minimum values of the function f(x, y, z) = x over the curve of intersection of the plane z = x + y and the ellipsoid $x^2 + 2y^2 + 2z^2 = 8$.

Ans:

Let $g_1(x, y, z) = x + y - z$ and $g_2(x, y, z) = x^2 + 2y^2 + 2z^2 - 8$. Then, we are finding extreme values of f on the intersection of $L_0(g_1)$ and $L_0(g_2)$.

By the method of Lagrange multipliers, we let $\nabla f(x, y, z) = \lambda \nabla g_1(x, y, z) + \mu \nabla g_2(x, y, z)$, and so

$$\begin{cases} 1 = \lambda + 2\mu x & --(1) \\ 0 = \lambda + 4\mu y & --(2) \\ 0 = -\lambda + 4\mu z & --(3) \\ 0 = x + y - z & --(4) \\ 0 = x^2 + 2y^2 + 2z^2 - 8 & --(5) \end{cases}$$

From (2) and (3) we have $4\mu(y+z) = 0$. Thus $\mu = 0$ or y+z = 0.

Case 1: $\mu = 0$. Then $\lambda = 0$ by (2), and $\lambda = 1$ by (1), so there is no solution for this case.

Case 2: y + z = 0. Then z = -y and, by (4), and x = -2y. Therefore, by (5), $4y^2 + 2y^2 + 2y^2 = 8$, and so $y = \pm 1$. From this case we obtain two points: (2, -1, 1) and (-2, 1, -1).

The function f(x, y, z) = x has absolute maximum value 2 and absolute minimum value -2 when restricted to the curve x + y = z, $x^2 + 2y^2 + 2z^2 = 8$.