THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 10

1. (a) Find the absolute maximum and minimum values of the function $f(x, y) = xy$ subject the the constraint

$$
\frac{x^2}{8} + \frac{y^2}{2} = 1.
$$

(b) In fact, the constraint in part (a) defines an ellipse which can be parametrized as $\gamma(t) = (2\sqrt{2}\cos t, \sqrt{2}\sin t)$, where $0 \leq t \leq 2\pi$.

Therefore, the question in part (a) is equivalent to finding absolute extrema of the single variable function $f(\gamma(t))$ (by abuse of notation, it is simply denoted by $f(t)$).

Using techniques in single variable calculus to find absolute extrema of $f(t)$ and verify the answer in (a).

Ans:

(a) Let $g(x, y) = \frac{x^2}{2}$ $\frac{x^2}{8} + \frac{y^2}{2}$ $\frac{y^2}{2} - 1$. Then, we have $\nabla f(x, y) = (y, x)$ and $\nabla g(x, y) = (\frac{x}{4}, y)$. By the method of Lagrange Multipliers, we let $\nabla f(x, y) = \lambda \nabla g(x, y)$, and so

$$
\begin{cases}\n y = \frac{\lambda x}{4} \\
 x = \lambda y \\
 \frac{x^2}{8} + \frac{y^2}{2} = \n\end{cases}
$$

 $\overline{1}$

Eliminating y from the first two equations, we have $x = \frac{\lambda^2}{4\lambda}$ $\frac{1}{4}x$ and so $x = 0$ or $\lambda = \pm 2$. When $x = 0$, $y = \frac{\lambda x}{4}$ $\frac{dx}{4} = 0$, but $(x, y) = (0, 0)$ does not satisfiy the last equation; when $\lambda = \pm 2$, $x = \pm 2y$, put them into the last equation, we have $y = \pm 1$.

 $f(1, 2) = f(-1, -2) = 2$ and $f(-1, 2) = f(1, -2) = -2$, so $f(x, y)$ attains absolute maximum at $(1, 2)$ and $(-1, -2)$ and it attains absolute minimum at $(-1, 2)$ and $(1, -2)$.

- (b) $f(t) = f(\gamma(t)) = (2\sqrt{2}\cos t)(\sqrt{2}\sin t) = 2\sin 2t$. Then, $f'(t) = 4 \cos 2t$. If $f'(t) = 0, t = \frac{\pi}{4}$ $\frac{\pi}{4}, \frac{3\pi}{4}$ $\frac{3\pi}{4}, \frac{5\pi}{4}$ $\frac{5\pi}{4}, \frac{7\pi}{4}$ $\frac{1}{4}$. Also $f''(t) = -8 \sin 2t$ and $f''(\frac{\pi}{4})$ $\frac{\pi}{4}) = f''(\frac{5\pi}{4})$ $\left(\frac{5\pi}{4}\right) = -8 < 0, f''(\frac{3\pi}{4})$ $\frac{3\pi}{4}$) = $f''(\frac{7\pi}{4})$ $\frac{1}{4}$) = 8 > 0. Therefore, $f(t)$ attains maximum at $t = \frac{\pi}{4}$ $\frac{\pi}{4}, \frac{5\pi}{4}$ $\frac{5\pi}{4}$ and minimum at $t = \frac{3\pi}{4}$ $\frac{3\pi}{4}, \frac{7\pi}{4}$ $\frac{1}{4}$. We have $f(\frac{\pi}{4})$ $\frac{\pi}{4}$) = $f(\frac{5\pi}{4})$ $\frac{5\pi}{4}$) = 2 and $f(\frac{3\pi}{4})$ $\frac{3\pi}{4}$) = $f(\frac{7\pi}{4})$ $\frac{1}{4}$) = -2. Therefore, $f(x, y)$ attains absolute maximum at (1,2) and (-1, -2) and it attains absolute minimum at $(-1, 2)$ and $(1, -2)$.
- 2. Find the maximum and minimum values of the function $f(x, y, z) = 4x 7y + 6z$ subjected to the constraint $g(x, y, z) = x^2 + 7y^2 + 12z^2 = 104.$

Ans:

Let $g(x, y, z) = x^2 + 7y^2 + 12z^2 - 104$. Then, we have $\nabla f(x, y, z) = (4, -7, 6)$ and $\nabla g(x, y, z) = (2x, 14y, 24z)$. By the method of Lagrange Multipliers, we let $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$, and so

$$
\begin{cases}\n4 = 2\lambda x \\
-7 = 14\lambda y \\
6 = 24\lambda z \\
x^2 + 7y^2 + 12z^2 = 104\n\end{cases}
$$

From the first three equations, we have $x=\frac{2}{1}$ $\frac{2}{\lambda}$, $y = -\frac{1}{2\lambda}$ $\frac{1}{2\lambda}$ and $z = \frac{1}{4\lambda}$ $\frac{1}{4\lambda}$. Put them into the last equation, we have

$$
\left(\frac{2}{\lambda}\right)^2 + 7\left(-\frac{1}{2\lambda}\right)^2 + 12\left(\frac{1}{4\lambda}\right)^2 = 104
$$

$$
\frac{13}{2\lambda^2} = 104
$$

$$
\lambda = \pm \frac{1}{4}
$$

When $\lambda = \frac{1}{4}$ $\frac{1}{4}$, $(x, y, z) = (8, -2, 1)$; when $\lambda = -\frac{1}{4}$ $\frac{1}{4}$, $(x, y, z) = (-8, 2, -1).$ $f(8, -2, 1) = 52$ and $f(-8, 2, -1) = -52$, so $f(x, y, z)$ attains minimum at $(-8, 2, -1)$ and it attains maximum at $(8, -2, 1)$.

3. Let
$$
f(w, x, y, z) = \left(w + \frac{1}{w}\right)^2 + \left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 + \left(z + \frac{1}{z}\right)^2
$$
 for $w, x, y, z > 0$.
Prove that f is bounded below by $\frac{289}{4}$ on the plane $w + x + y + z = 16$.

Ans:

Let $g(w, x, y, z) = w + x + y + z - 16$.

By the method of Lagrange Multipliers, we let $\nabla f(w, x, y, z) = \lambda \nabla g(w, x, y, z)$, and so

$$
\begin{cases}\n2\left(w+\frac{1}{w}\right)\left(1-\frac{1}{w^2}\right) = \lambda \\
2\left(x+\frac{1}{x}\right)\left(1-\frac{1}{x^2}\right) = \lambda \\
2\left(y+\frac{1}{y}\right)\left(1-\frac{1}{y^2}\right) = \lambda \\
2\left(z+\frac{1}{z}\right)\left(1-\frac{1}{z^2}\right) = \lambda \\
w+x+y+z = 16\n\end{cases}
$$

From the first two equations, we have

$$
w - \frac{1}{w^3} = x - \frac{1}{x^3}
$$

$$
w - x = -\frac{w^3 - x^3}{w^3 x^3}
$$

$$
w - x = -\frac{(w - x)(w^2 + wx + x^2)}{w^3 x^3}
$$

Therefore, $w = x$ or $1 = -\frac{w^2 + wx + x^2}{x-2}$ $\frac{d^2x + x^2}{d^3x^3}$, but the second case is rejected since the left hand side is negative. Similarly, we have $w = x = y = z$.

From the last equation, we have $w = x = y = z = 4$. Therefore, f attains an extreme value $f(4, 4, 4, 4) = \frac{289}{4}$.

The most difficult part is showing that it is indeed the absolute minimum.

Let $D = \{(w, x, y, z) \in \mathbb{R}^4 : w, x, y, z > 0 \text{ and } w + x + y + z = 16\}$ and in fact, we are finding extreme values of the function $f: D \to \mathbb{R}$ defined by

$$
f(w, x, y, z) = \left(w + \frac{1}{w}\right)^2 + \left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 + \left(z + \frac{1}{z}\right)^2.
$$

Let $D' = \{(w, x, y, z) \in \mathbb{R}^4 : w, x, y, z \ge 1/10 \text{ and } w + x + y + z = 16\} \subset D$ which is a compact subset of \mathbb{R}^4 . Therefore, $f: D' \to \mathbb{R}$ has an absolute minimum by the extreme value theorem.

However, for any point $(w, x, y, z)\partial D'$ of D', there is a coordinate, say $w = 1/10$. Then, at that point, we have

$$
f(w, x, y, z) > (w + \frac{1}{w})^2 = (\frac{101}{10})^2 > 100 > \frac{289}{4}.
$$

Therefore, the absolute minimum of the function $f: D' \to \mathbb{R}$ attains absolute minimum at $(4, 4, 4, 4)$.

Furthermore, if $(w, x, y, z) \in D \backslash D'$, then there is a coordinate, say w, so that $0 < w < 1/10$. Then, at that point, we have

$$
f(w, x, y, z) > (w + \frac{1}{w})^2 > (\frac{1}{w})^2 > 100 > \frac{289}{4}.
$$

Therefore, $f(w, x, y, z) \geq \frac{289}{4}$ $\frac{66}{4} = f(4, 4, 4, 4)$ for all D.

4. Find the absolute maximum and minimum values of the function $f(x, y, z) = x$ over the curve of intersection of the plane $z = x + y$ and the ellipsoid $x^2 + 2y^2 + 2z^2 = 8$.

Ans:

Let $g_1(x, y, z) = x + y - z$ and $g_2(x, y, z) = x^2 + 2y^2 + 2z^2 - 8$. Then, we are finding extreme values of f on the intersection of $L_0(g_1)$ and $L_0(g_2)$.

By the method of Lagrange multipliers, we let $\nabla f(x, y, z) = \lambda \nabla g_1(x, y, z) + \mu \nabla g_2(x, y, z)$, and so

$$
\begin{cases}\n1 = \lambda + 2\mu x & \quad - - (1) \\
0 = \lambda + 4\mu y & \quad - - (2) \\
0 = -\lambda + 4\mu z & \quad - - (3) \\
0 = x + y - z & \quad - - (4) \\
0 = x^2 + 2y^2 + 2z^2 - 8 & \quad - - (5)\n\end{cases}
$$

From (2) and (3) we have $4\mu(y+z) = 0$. Thus $\mu = 0$ or $y + z = 0$.

Case 1: $\mu = 0$. Then $\lambda = 0$ by (2), and $\lambda = 1$ by (1), so there is no solution for this case.

Case 2: $y + z = 0$. Then $z = -y$ and, by (4), and $x = -2y$. Therefore, by (5), $4y^2 + 2y^2 + 2y^2 = 8$, and so $y = \pm 1$. From this case we obtain two points: $(2, -1, 1)$ and $(-2, 1, -1)$.

The function $f(x, y, z) = x$ has absolute maximum value 2 and absolute minimum value −2 when restricted to the curve $x + y = z$, $x^2 + 2y^2 + 2z^2 = 8$.